If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+t-0.25=0
a = 1; b = 1; c = -0.25;
Δ = b2-4ac
Δ = 12-4·1·(-0.25)
Δ = 2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{2}}{2*1}=\frac{-1-\sqrt{2}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{2}}{2*1}=\frac{-1+\sqrt{2}}{2} $
| 0.4x+0.25(84-x)=28 | | 3/4m-5/8m=6 | | 4x+38=6x+10 | | x2-17=83 | | 6x-19-10x=17 | | 3p+4-8p=29 | | 11-15=3d-8d+6 | | 3=-3x=36 | | 2+5w=12 | | 3p+4-8p=-3+22 | | 6q+-63q+-5q-(-28)=-96 | | 6=n/3-1 | | x-1/2-1=x-5/3 | | 4=5X+7(x+4) | | 30p-(-9p)-(-36)=-42 | | (X-6)+(y-7)=25 | | 46c+9c+c-9c=47 | | 4.9x+47.9=0.5-10.9x | | 9x/4-4=41 | | 6x/5-6=24 | | 3.27^x=9^x+4 | | (2+X)=4+4x+x^2 | | h-20h=19 | | x^-8x-9=0 | | (z+4)^4/3=-2 | | 11(7)-(6x-5)=40 | | 2b÷3-5=3 | | 5y-8=9+4(y-7) | | X/2=x/6+10 | | 2(x+7)=4x+9-2x+5 | | |8x-3|=|3x+5| | | 7=2u-7 |